资源文件file1
hadoop
test
hello
word
资源文件file2
happy
birthday
this
is
a
test
最终的结果
hadoop
test
hello
word happy
birthday
this
is
a
test 分析:将两个文件合并成一个文件,是一个很简单的案例。设想我们可以将value设为空,这样就只有key在输出的时候直接数据就可以了。map过程将两个文件的每一行设为key,值设为空。在Reduce阶段只用将map阶段整理好的数据输出就可以了。
实现:
package com.bwzy.hadoop;import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.Mapper.Context;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;import org.apache.hadoop.util.Tool;import org.apache.hadoop.util.ToolRunner;import com.bwzy.hadoop.WordCount.Map;import com.bwzy.hadoop.WordCount.Reduce;public class HeBing extends Configured implements Tool { public static class Map extends Mapper{ public void map(LongWritable key, Text value, Context context) { String line = value.toString(); try { context.write(new Text(line), new Text("")); } catch (IOException e) { e.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } } public static class Reduce extends Reducer { public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { context.write(key, new Text("")); } } @Override public int run(String[] arg0) throws Exception { Job job = new Job(getConf()); job.setJobName("HeBing"); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapperClass(Map.class); job.setCombinerClass(Reduce.class); job.setReducerClass(Reduce.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.setInputPaths(job, new Path(arg0[0])); FileOutputFormat.setOutputPath(job, new Path(arg0[1])); boolean success = job.waitForCompletion(true); return success ? 0 : 1; } public static void main(String[] args) throws Exception { int ret = ToolRunner.run(new HeBing(), args); System.exit(ret); }}
运行:
1:将程序打包
选中打包的类-->右击-->Export-->java-->JAR file--填入保存路径-->完成
2:将jar包拷贝到hadoop的目录下。(因为程序中用到来hadoop的jar包)
3:将资源文件上传到定义的hdfs目录下
创建hdfs目录命令(在hadoop已经成功启动的前提下):hadoop fs -mkdir /自定义/自定义/input
上传本地资源文件到hdfs上:hadop fs -put -copyFromLocal /home/user/Document/file1 /自定义/自定义/input
hadop fs -put -copyFromLocal /home/user/Document/file2 /自定义/自定义/input
4:运行MapReduce程序:
hadoop jar /home/user/hadoop-1.0.4/HeBing.jar com.bwzy.hadoop.HeBing /自定义/自定义/input /自定义/自定义/output
说明:hadoop运行后会自动创建/自定义/自定义/output目录,在该目录下会有两个文件,其中一个文件中存放来MapReduce运行的结果。如果重新运行该程序,需要将/自定义/自定义/output目录删除,否则系统认为该结果已经存在了。
5:运行的结果为
hadoop
test
hello
word happy
birthday
this
is
a
test